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ABSTRACT 
Bipolar neutrosophic set theory and rough neutrosophic set theory are emerging as powerful tool for dealing with 

uncertainty, and indeterminate, incomlete, and inprecise information. In the present study we develop a hybrid 

structure called “rough bipoar neutrsophic set”. In the study, we define rough bipoar neutrsophic set and define 

union, complement, intersection and containment of rough bipolar neutrosophic sets. 

 

INTRODUCTION  
The notion of fuzzy set which is non-statistical in nature was introduced by Zadeh in 1965[1] to deal with 

uncertainty. Fuzzy set has been applied in many real applications to handle uncertainty. In 1986, Atanassov [2] 

extended the concept of fuzzy set to intuitionistic fuzzy set by introducing the degree non-membership as an 

independent component. In 1998, Smarandache [3] grounded the concept of degree of indeterminacy as 

independent component and defined neutrosophic set. In 2005, Wang et al. [4] introduced the concept of single 

valued neutrosophic set (SVNS) which is an instance of a neutrosophic set to deal real scientific and engineering 

applications. 

 

Lee [5] introduced the concept of bipolar fuzzy sets, as an extension of fuzzy sets. In bipolar fuzzy sets the degree 

of membership is extended from [0, 1] to [-1, 1]. In a bipolar fuzzy set, if the degree of membership of an element 

is zero, then we say the element is unrelated to the corresponding property, the membership degree (0, 1] of an 

element specifies that the element somewhat satisfies the property, and the membership degree [−1, 0) of an 

element implies that the element somewhat satisfies the implicit counter-property [6].  

 

In 2014, Broumi et al. [7, 8] presented the concept rough neutrosophic set to deal indeterminacy in more flexible 

way.  Pramanik and Mondal [9, 10] and Mondal and Pramanik [11, 12, 13] studied different applications of rough 

neutrosophic sets in decision making.  Deli et al. [14] defined bipolar neutrosophic set and showed numerical 

example for multi-criteria decision making problem.  

 

In this paper we combine bipolar neutrosophic set and rough neutrosophic set and define rough bipolar 

neutrosophic set. We define the union, complement, intersection and containment of rough bipolar neutrosophic 

sets.  

 

The rest of the paper has been organized as follows. Section 2 presents mathematical preliminaries of fuzzy bipolar 

set, neutrosophic set, single valued neutrosophic set, bipolar neutrosophic set, and rough neutrosophic set. Section 

3 is devoted to define rough bipolar neutrosophic set.   

 

SOME RELEVANT DEFINITIONS 
In this section we recall some basic definitions of bipolar valued fuzzy set, neutrosophic set, single valued 

neutrosophic sets and rough neutrosophic set. 
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Definition 2.1 Bipolar valued fuzzy set [5]  

Let U be the universe of discourse. Then a bipolar valued fuzzy set B on U is defined by positive membership 

function ,B
 i.e. 

B : ]1,0[U and a negative membership function ,-
B  i.e. 

:-
B ]0,1[U  .  

Mathematically a bipolar valued fuzzy set is represented by B =  )z(),z(:z -
BB 

 Uz  

 

Definition 2.2  Neutrosophic set [3] 

Let U be the universe of discourse. Then a neutrosophic set S in U with generic elements x is characterized by a 

truth membership function TS(x), an indeterminacy membership function IS(x) and a falsity membership function 

FS(x). There is no restriction on TS(x), IS(x) and FS(x) other than they are subsets of   1,0 that is TS(x): N

  1,0 ; IS(x): N   1,0 ; FS(x): N   1,0  

Therefore,   3)X(Fsup)X(Isup)X(Tsup)X(Finf)X(Iinf)X(Tinf0 SSSSSS . 

 

Definition 2.3 Single-valued neutrosophic set [4]  

Let U be a universal space of points (objects) with a generic element of U denoted by x. 
 

A single valued neutrosophic set S is characterized by a truth membership function )x(TS , a falsity membership 

function )x(FS  and indeterminacy function )x(IS with )x(TS ,
)x(FS ,

)x(IS 
 
 1,0 for all x in U.  

When U is continuous, a SNVS S can be written as follows: 

      
x

SSS Ux,xxF,xI,xTS and when U is discrete, a SVNS S can be written as follows:
 

      Ux,xxF,xI,xTS SSS   

There is no restriction on TS(x), IS(x) and FS(x) other than they are subsets of [0, 1] that is  

TS(x): N  [0, 1]; IS(x): N [0, 1]; FS(x): N [0, 1] 

Therefore, 3)X(Fsup)X(Isup)X(Tsup)X(Finf)X(Iinf)X(Tinf0 SSSSSS 
 

 

Definition 2.4 bipolar neutrosophic set [14] 
A bipolar neutrosophic set A in Z is defined as an object of the form  

A={< T+(z), I+(z), F+(z), T+(z), I-(z), F-(z) >: z ∈ Z}, where ,T+, I+, F+ : X  [0, 1] and , T-, I-, F-: X   [-1, 0]. 

The positive membership degree T+(z), I+(z), and F+(z) denote the truth membership, indeterminate membership 

and false membership respectively of an element z ∈ Z corresponding to a bipolar neutrosophic set A. The negative 

membership degree T-(z), I-(z), and F-(z) denote the truth membership, indeterminate membership and false 

membership respectively of an element z ∈ Z to some implicit counter-property corresponding to a bipolar 

neutrosophic set A. 

 

Definition 2.5 [14] Let, B1 = {x, )x(F ),x(I ),x(T),x(F),x(I),x(T
1B1B1B1B1B1B
   x U} and B2 = {x,

)x(F ),x(I ),x(T),x(F),x(I),x(T
2B2B2B2B2B2B
   x U} be two BNSs. Then B1    B2 if and only if 

)x(T
1B
  )x(T

2B
 , )x(I

1B
  )x(I

2B
 , )x(F

1B
  )x(F

2B
 ; )x(T

1B
  )x(T

2B
 , )x(I

1B
  )x(I

2B
 , )x(F

1B
  )x(F

2B
 for all x 

U. 

 

Definition 2.6 [14] Assume that B1 = {x, )x(F ),x(I ),x(T),x(F),x(I),x(T
1B1B1B1B1B1B

   x U} and B2 = {x,

)x(F ),x(I ),x(T),x(F),x(I),x(T
2B2B2B2B2B2B

   x U} be two BNSs. Then B1 = B2 if and only if 

)x(T
1B


= )x(T

2B


, )x(I

1B


= )x(I

2B


, )x(F

1B


= )x(F

2B


; )x(T

1B


= )x(T

2B


, )x(I

1B


= )x(I

2B


, )x(F

1B


= )x(F

2B


for all x 

U. 
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Definition 2.7 [14] Assume that B = {x, )x(F ),x(I ),x(T),x(F),x(I),x(T BBBBBB

   x U} be a BNS. The 

complement of B is denoted by Bc and is defined by 

)x(T cB


= {1+} - )x(TB

 , )x(I cB


= {1+} - )x(IB

 , )x(F cB


= {1+} - )x(FB

 ; 

)x(T cB


= {1-} - )x(TB

 , )x(I cB


= {1-} - )x(IB

 , )x(F cB


= {1-} - )x(FB

  for all x U. 

  

Definition 2.8 [14] Assume that B1 = {x, )x(F ),x(I ),x(T),x(F),x(I),x(T
1B1B1B1B1B1B

   x U} and B2 = {x,

)x(F ),x(I ),x(T),x(F),x(I),x(T
2B2B2B2B2B2B

   x U} be two BNSs. Then their union B1B2 is defined as 

follows: 

B1B2 = {Max ( )x(T
1B


, )x(T

2B

 ),
2

)x(I)x(I
2B1B

 
, Min ( )x(F

1B


, )x(F

2B


), Min ( )x(T

1B


, )x(T

2B

 ),

2

)x(I)x(I
2B1B

 
, Max ( )x(F

1B


, )x(F

2B


)} for all x U. 

 

Definition 2.9 [14] Assume that B1 = {x, )x(F ),x(I ),x(T),x(F),x(I),x(T
1B1B1B1B1B1B

   x U} and B2 = {x,

)x(F ),x(I ),x(T),x(F),x(I),x(T
2B2B2B

2B2B2B
   x U} be two BNSs. Then their intersection B1B2 is defined 

as follows: 

B1B2 = {Min ( )x(T
1B
 , )x(T

2B
 ),

2

)x(I)x(I
2B1B

 
, Max ( )x(F

1B
 , )x(F

2B
 ), Max ( )x(T

1B
 , )x(T

2B
 ),

2

)x(I)x(I
2B1B

 
, 

Min ( )x(F
1B


, )x(F

2B


)}for all x U.

                      
  

 

Definition 2.10: Definitions of rough neutrosophic set [7, 8] 

Let Z be a non-null set and R be an equivalence relation on Z. Let P be neutrosophic set in Z with the membership 

function ,TP indeterminacy function PI  and non-membership function PF . The lower and the upper 

approximations of P in the approximation (Z, R) denoted by  PN  and  PN   can be respectively defined as follows: 

    ,Zx,xz/)x(F),x(I),x(T,xPN R)P(N)P(N)P(N 

    
    Z∈x,x∈z/)x(F),x(I),x(T,xPN R)P(N)P(N)P(N



     Where,    zTx)x(T PRz)P(N  ,    zIx)x(I PRz)P(N  ,    zFx)x(F PRz)P(N  ,  

   zTx)x(T PRz)P(N
 ,    zTx)x(I PRz)P(N

 ,    zIx)x(F PRz)P(N
  

So, 3)x(F)x(I)x(T0 )P(N)P(N)P(N  and 3)x(F)x(I)x(T0
)P(N)P(N)P(N

  

Where  and   denote “max” and “min’’ operators respectively,  zTP ,  zIP  and  zFP are  the membership, 

indeterminacy and non-membership of z  with respect to P. It is easy to see that  PN and  PN  are two 

neutrosophic sets in Z. 

 

Thus NS mapping ,N N : N(Z)  N(Z) are, respectively, referred to as the lower  and  upper  rough  NS  

approximation  operators,  and the pair ))P(N),P(N( is called the rough neutrosophic set in ( Z, R). 

 

From the above definition, it is seen that )P(N and )P(N  have constant membership on the equivalence classes of 

R if );P(N)P(N   i.e. ),x(T)x(T
)P(N)P(N 

 
),x(I)x(I

)P(N)P(N 
 

  )x(F )P(N 
 

x(F
)P(N

) for all x belongs to Z. 

 

 



  
[Pramanik et al., 3(6): June, 2016]                                                                             ISSN 2349-4506 
  Impact Factor: 2.545 

Global Journal of Engineering Science and Research Management 

http: //  www.gjesrm.com        © Global Journal of Engineering Science and Research Management 

 [74] 

ROUGH BIPOLAR NEUTROSOPHIC SETS (RBNS)  
In this section we introduce the notion of rough bipolar neutrosophic sets by combining rough neutrosophic set 

and bipolar neutrosophic set. We define union, complement, intersection and containment of rough bipolar 

neutrosophic sets.  

  

Definition 3.1: Rough bipolar neutrosophic sets   
Let Z be a non-null set and R be an equivalence relation on Z. Let B be a bipolar neutrosophic set in Z. The 

positive membership degrees T+(z), I+(z), and F+(z) respectively denote the truth membership, indeterminate 

membership and falsity membership respectively of an element z ∈ Z corresponding to a bipolar neutrosophic set 

B. The negative membership degrees ),Z(I),Z(T -- and )Z(F-  denote the truth membership, indeterminate 

membership and false membership of an element z ∈ Z to some implicit counter-property corresponding to a 

bipolar neutrosophic set B. The lower and the upper approximations of B in the approximation (Z, R) denoted by

 BN  and  BN   are respectively defined as follows: 

 BN   ,Zx,xz/)x(F),x(I),x(T),x(F),x(I),x(T,x R
-

)B(N
-

)B(N
-

)B(N)B(N)B(N)B(N
 

 
  BN   Z∈x,x∈z/)x(T),x(T),x(T),x(T),x(T),x(T,x R

-

)B(N

-

)B(N

-

)B(N)B(N)B(N)B(N
 

    

                                

 
Here,    zTx)x(T Rz)B(N

  ,    zIx)x(I Rz)B(N
  ,    zFx)x(F Rz)B(N

  ,  

   zTx)x(T
-

Rz
-

)B(N
 ,    zIx)x(I

-
Rz

-
)B(N

 ,    zFx)x(F
-

Rz
-

)B(N
 ; 

   zTx)x(T Rz
)B(N

   ,    zIx)x(I Rz
)B(N

  ,
 

   zFx)x(F Rz
)B(N

  ,  

   zTx)x(T
-

Rz
-

)B(N
  ,    zIx)x(I

-
Rz

-

)B(N


   
   zFx)x(F

-
Rz

-

)B(N
 .  

Here  and   denote “max” and “min’’ operators respectively, the positive membership degrees T+(z), I+(z), and  

F+(z) denote respectively the degree of  truth membership, indeterminate membership and falsity membership of 

an element z ∈ Z corresponding to a bipolar neutrosophic set B. The negative membership degrees  T-(z), I-(z), 

and F-(z) denote respectively the degrees of truth membership, indeterminate membership and falsity membership 

of an element z ∈ Z to some implicit counter-property corresponding to a bipolar neutrosophic set B.
   

It is easy 

to see that  BN and  BN  are two rough bipolar neutrosophic sets in Z.
 

 

Thus NS mappings ,N N : N(Z)  N(Z) are, respectively, referred to as the lower  and  upper  rough bipolar  NS  

approximation  operators,  and the pair ))B(N),B(N( is called the rough bipolar neutrosophic set in ( Z, R). 

 

From the above definition, it is seen that )B(N and )B(N  have constant membership on the equivalence classes 

of R if );B(N)B(N   i.e. ),x(T)x(T
)B(N)B(N 

 
),x(I)x(I

)B(N)B(N 
 

)x(F )x(F
)B(N)B(N  .Xx

  
Example 3.1 

 Let X={x1, x2, x3} 

  

    
    
    







20.0,45.0,35.0,10.0,40.0,40.0,20.0,15.0,25.0,30.0,10.0,50.0x

10.0,30.0,30.0,20.0,10.0,60.0,18.0,40.0,40.0,30.0,50.0,30.0x

12.0,30.0,50.0,20.0,40.0,60.0,08.0,40.0,60.0,10.0,30.0,50.0x

A

3

2

1

                       

 

 

Example 3.2  

Let Z = {P1, P2, P3, P4, P5, P6, P7, P8} be the universe of discourse. Let R be an equivalence relation, where its 

partition of Z is given by 

Z/R ={(P1, P4), (P2, P3, P6), (P5), (P7, P8)} 

Let N(P) = {<P1(0.2, 0.3, 0.4, -0.4, -0.3, -0.1), P4(0.3, 0.5, 0.4, -0.3, -0.3, -0.2), P5(0.4, 0.6, 0.2, -0.1, -0.2, -0.2), 

P7(0.1, 0.3, 0.5, -0.4, -0.5, -0.2)>} be a bipolar neutrosophic set of Z. Then from definition (2.6), we obtain 
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)P(N = {<P1(0.2, 0.5, 0.4, -0.4, -0.3, -0.1), P4(0.2, 0.5, 0.4, -0.4, -0.3, -0.1), P5(0.4, 0.6, 0.2, -0.1, -0.2, -0.2)}. 

)P(N = {<P1(0.3, 0.3, 0.4, -0.3, -0.3, -0.2), P4(0.3, 0.3, 0.4, -0.3, -0.3, -0.2), P5(0.4, 0.6, 0.2, -0.1, -0.2, -0.2), P7(0.1, 

0.3, 0.5, -0.4, -0.5, -0.2), P8(0.1, 0.3, 0.5, -0.4, -0.5, -0.2)}. 

 

Example 3.3 

Let N(Q) = {<Q1(0.2, 0.3, 0.4, -0.4, -0.3, -0.1), Q4(0.2, 0.3, 0.4, -0.4, -0.3, -0.1), Q5(0.4, 0.6, 0.2, -0.1, -0.2, -0.2)>} 

be a bipolar neutrosophic set of Z. Then we obtain lower approximation and upper approximation of N(Q) as 

follows: 

)Q(N = {< Q1(0.2, 0.3, 0.4, -0.4, -0.3, -0.1), Q4(0.2, 0.3, 0.4, -0.4, -0.3, -0.1), Q5(0.4, 0.6, 0.2, -0.1, -0.2, -0.2)}.  

)Q(N = {< Q1(0.2, 0.3, 0.4, -0.4, -0.3, -0.1), Q4(0.2, 0.3, 0.4, -0.4, -0.3, -0.1), Q5(0.4, 0.6, 0.2, -0.1, -0.2, -0.2)}.  

Obviously, )Q(N)Q(N 
 

 

Definition 3.4 Containment 

Let A = )]P(N),P(N[  and B = )]Q(N),Q(N[  be two rough bipolar neutrosophic sets.  Then, BA  iff the following 

conditions hold. 

)x(T)x(T
)Q(N)P(N


 , )x(I)x(I

)Q(N)P(N


 , )x(F)x(F
)Q(N)P(N

  , )x(T)x(T -

)Q(N

-
)P(N  , )x(T)x(T -

)Q(N

-
)P(N  and

)x(T)x(T -

)Q(N

-
)P(N  , for  x Z.  

 

Definition 3.5 Equality of two RBNS 

Two rough bipolar neutrosophic sets )]P(N),P(N[  and )]Q(N),Q(N[  are equal if the following conditions hold. 

)x(T)x(T
)Q(N)P(N

  , )x(I)x(I
)Q(N)P(N


 , )x(F)x(F

)Q(N)P(N


 , )x(T)x(T -

)Q(N

-
)P(N  , )x(T)x(T -

)Q(N

-
)P(N  and

)x(T)x(T -

)Q(N

-
)P(N  , for  x Z. 

 

Definition 3.6 Union 

Let A = )]S(N),S(N[  and B = )]Q(N),Q(N[  be two rough bipolar neutrosophic sets.  Then, BA is defined as 

follows: 

)x(BA







































































































))x(F),x(Fmax(,
2

)x(I)x(I

)),x(T),x(Tmin(

)),x(F),x(Fmin(,
2

)x(I)x(I

)),x(T),x(Tmax(

,

))x(F),x(Fmax(,
2

)x(I)x(I
)),x(T),x(Tmin(

)),x(F),x(Fmin(,
2

)x(I)x(I
)),x(T),x(Tmax(

-

)Q(N

-
)S(N

-

)Q(N

-
)S(N

-

)Q(N

-
)S(N

)Q(N)S(N

)Q(N)S(N

)Q(N)S(N

-
)Q(N

-
)S(N

-
)Q(N

-
)S(N

-
)Q(N

-
)S(N

)Q(N)S(N

)Q(N)S(N

)Q(N)S(N

,for x Z. 

 

Example 3.4: Let X={x1, x2, x3}. Two rough bipolar neutrosophic sets A and B on X are  

A

    
    
    





20.0,45.0,35.0,10.0,40.0,40.0,20.0,15.0,25.0,30.0,10.0,50.0

10.0,30.0,30.0,20.0,10.0,60.0,18.0,40.0,40.0,30.0,50.0,30.0

12.0,30.0,50.0,20.0,40.0,60.0,08.0,40.0,60.0,10.0,30.0,50.0

3

2

1

x

x

x

 

B

    
    
    





30.0,55.0,45.0,20.0,50.0,50.0,30.0,25.0,35.0,40.0,20.0,60.0

20.0,40.0,40.0,30.0,20.0,70.0,28.0,50.0,50.0,40.0,60.0,40.0

22.0,40.0,60.0,30.0,50.0,70.0,18.0,50.0,70.0,20.0,40.0,60.0

3

2

1

x

x

x
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Now BA

    
    
    





20.0,50.0,45.0,10.0,45.0,50.0,20.0,20.0,35.0,30.0,15.0,60.0

10.0,35.0,40.0,20.0,15.0,70.0,18.0,45.0,50.0,30.0,55.0,40.0

12.0,35.0,60.0,20.0,45.0,70.0,08.0,45.0,70.0,10.0,35.0,60.0

3

2

1

x

x

x

 

 

Definition 3.7: Intersection: 

 Let A = )]S(N),S(N[  and B = )]Q(N),Q(N[  be two rough bipolar neutrosophic sets.  Then, BA is defined as 

)x(BA







































































































))x(F),x(Fmin(,
2

)x(I)x(I

)),x(T),x(Tmax(

)),x(F),x(Fmax(,
2

)x(I)x(I

)),x(T),x(Tmin(

,

))x(F),x(Fmin(,
2

)x(I)x(I
)),x(T),x(Tmax(

)),x(F),x(Fmax(,
2

)x(I)x(I
)),x(T),x(Tmin(

-

)Q(N

-
)S(N

-

)Q(N

-
)S(N

-

)Q(N

-
)S(N

)Q(N)S(N

)Q(N)S(N

)Q(N)S(N

-
)Q(N

-
)S(N

-
)Q(N

-
)S(N

-
)Q(N

-
)S(N

)Q(N)S(N

)Q(N)S(N

)Q(N)S(N

,for x Z. 

 

Example 3.5 

 Let X={x1, x2, x3}. Two rough bipolar neutrosophic sets A and B on X are  

A

    
    
    





20.0,45.0,35.0,10.0,40.0,40.0,20.0,15.0,25.0,30.0,10.0,50.0x

10.0,30.0,30.0,20.0,10.0,60.0,18.0,40.0,40.0,30.0,50.0,30.0x

12.0,30.0,50.0,20.0,40.0,60.0,08.0,40.0,60.0,10.0,30.0,50.0x

3

2

1

 

B

    
    
    





30.0,55.0,45.0,20.0,50.0,50.0,30.0,25.0,35.0,40.0,20.0,60.0x

20.0,40.0,40.0,30.0,20.0,70.0,28.0,50.0,50.0,40.0,60.0,40.0x

22.0,40.0,60.0,30.0,50.0,70.0,18.0,50.0,70.0,20.0,40.0,60.0x

3

2

1

 

Now BA

    
    
    





30.0,50.0,35.0,20.0,45.0,40.0,30.0,20.0,25.0,40.0,15.0,50.0x

20.0,35.0,30.0,30.0,15.0,60.0,18.0,45.0,50.0,40.0,55.0,30.0x

22.0,35.0,50.0,30.0,45.0,60.0,18.0,45.0,60.0,20.0,35.0,50.0x

3

2

1

 

 

Definition 3.8: Complement 

 If N(S) = )]S(N),S(N[   is a rough bipolar neutrosophic set in (U, R), the complement of N(S) is the rough bipolar 

neutrosophic set defined by  

~N(S) = ])S(N,)S(N[ cc where, c)S(N and c)S(N are the complements of bipolar neutrosophic sets. 

  cSN   ,Zx,xz/)x(F1),x(I1),x(T1),x(F1),x(I1),x(T1,x R
-

)S(N
-

)S(N
-

)S(N)S(N)S(N)S(N  

    Z∈x,x∈z/)x(F1),x(I1),x(T1),x(T1),x(T1),x(T1,xSN R
-

)S(N

-

)S(N

-

)S(N)S(N)S(N)S(N

c  

    

         

 

Example 3.6 

Let X={x1, x2, x3}. A rough bipolar neutrosophic set A on X is 

A

    
    
    





20.0,45.0,35.0,10.0,40.0,40.0,20.0,15.0,25.0,30.0,10.0,50.0x

10.0,30.0,30.0,20.0,10.0,60.0,18.0,40.0,40.0,30.0,50.0,30.0x

12.0,30.0,50.0,20.0,40.0,60.0,08.0,40.0,60.0,10.0,30.0,50.0x

3

2

1

 

  then the complement of A is given as follows. 
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cA

    
    
    





80.0,55.0,65.0,90.0,60.0,60.0,80.0,85.0,75.0,70.0,90.0,50.0x

90.0,70.0,70.0,80.0,90.0,40.0,82.0,60.0,60.0,70.0,50.0,70.0x

88.0,70.0,50.0,80.0,60.0,40.0,92.0,60.0,40.0,90.0,70.0,50.0x

3

2

1

       

 

Definition 3.9 

If N(S) and N(Q) are two rough bipolar neutrosophic sets  in Z ,then we define the following: 

I.  N(S) = N(Q) if and only if )Q(N)S(N  and )Q(N)S(N 
 

II. N(S)  N(Q) if and only if )Q(N)S(N  and )Q(N)S(N 
 

III. N(S)   N(Q) if and only if  )Q(N)S(N),Q(N)S(N 
 

IV. N(S)   N(Q) if and only if  )Q(N)S(N),Q(N)S(N 
 

V.  N(S) + N(Q) if and only if  )Q(N)S(N),Q(N)S(N
 

VI. N(S).N(Q) if and only if  )Q(N.)S(N),Q(N.)S(N
 

 

Proposition 3.1 

If M, Q, S are rough bipolar neutrosophic sets in (Z, R), then the following propositions hold.
 

I. ~M(~M) = M 

II. )M(N)M(N 
 

III.      )Q(N~)M(N~)Q(N)M(N~  
 

IV.       )Q(N~)M(N~)Q(N)M(N~  
 

V.       )Q(N~)M(N~)Q(N)M(N~  
 

VI.      )Q(N~)M(N~)Q(N)M(N~  
 

VII. MQQM  and MQQM 
 

VIII. S)QM()SQ(M   and S)QM()SQ(M 
 

 

Proof of I 

 If N(M) = )]M(N),M(N[   is a rough bipolar neutrosophic set in (U, R), the complement of N(P) is the rough 

bipolar neutrosophic set defined as follows. 

 MN~   ,Zx,xz/)x(F1),x(I1),x(T1),x(F1),x(I1),x(T1,x R
-

)M(N
-

)M(N
-

)M(N)M(N)M(N)M(N  

 MN~   Z∈x,x∈z/)x(F1),x(I1),x(T1),x(T1),x(T1),x(T1,x R
-

)M(N

-

)M(N

-

)M(N)M(N)M(N)M(N
 

 
 From this definition it is obvious that, ~M(~M) = M. 

 

Proof of II 

The lower and the upper approximations of M in the approximation (Z, R) denoted by  MN  and  MN   are 

respectively defined as follows: 

 MN   ,Zx,xz/)x(F),x(I),x(T),x(F),x(I),x(T,x R
-

)M(N
-

)M(N
-

)M(N)M(N)M(N)M(N  

 
 MN   Z∈x,x∈z/)x(T),x(T),x(T),x(T),x(T),x(T,x R

-

)M(N

-

)M(N

-

)M(N)M(N)M(N)M(N
 

    

                                 

Where,    zTx)x(T Rz)M(N
  ,    zIx)x(I Rz)M(N

  ,    zFx)x(F Rz)M(N
  ,  

   zTx)x(T
-

Rz
-

)M(N
 ,    zIx)x(I

-
Rz

-
)M(N

 ,    zFx)x(F
-

Rz
-

)M(N
 ; 

   zTx)x(T Rz
)M(N

   ,    zIx)x(I Rz
)M(N

  ,
 

   zFx)x(F Rz
)M(N

  ,  

   zTx)x(T
-

Rz
-

)M(N
  ,    zIx)x(I

-
Rz

-

)M(N


   
   zFx)x(F

-
Rz

-

)M(N
 . 
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So,  MN   MN     

 

Proof of III 

  Assume that x   )Q(N)M(N~   

  x  )M(N~ and x  )Q(N~
 

  x     )Q(N~)M(N~ 
 

  x     )Q(N~)M(N~ 
 

      )Q(N~)M(N~)Q(N)M(N~  
 

Similarly,       )Q(N~)M(N~)Q(N)M(N~  
 

Hence,       )Q(N~)M(N~)Q(N)M(N~  
 

 

Proof of IV 

 Assume that x   )Q(N)M(N~   

  x  )M(N~ or x  )Q(N~
 

  x     )Q(N~)M(N~ 
 

  x     )Q(N~)M(N~ 
 

      )Q(N~)M(N~)Q(N)M(N~  
 

Similarly,       )Q(N~)M(N~)Q(N)M(N~  
 

Hence,       )Q(N~)M(N~)Q(N)M(N~  
 

 

Proof of V 

Assume that x   )Q(N)M(N~   

  x  )M(N~ and x  )Q(N~
 

  x     )Q(N~)M(N~ 
 

  x     )Q(N~)M(N~ 
 

      )Q(N~)M(N~)Q(N)M(N~  
 

Similarly,       )Q(N~)M(N~)Q(N)M(N~  
 

Hence,       )Q(N~)M(N~)Q(N)M(N~  
 

 

Proof of VI 

Assume that x   )Q(N)M(N~   

  x  )M(N~ or x  )Q(N~
 

  x     )Q(N~)M(N~ 
 

  x     )Q(N~)M(N~ 
 

      )Q(N~)M(N~)Q(N)M(N~  
 

Similarly,       )Q(N~)M(N~)Q(N)M(N~  
 

Hence,       )Q(N~)M(N~)Q(N)M(N~  
  

Proofs of VII and VIII are obvious.  

 

Proof of VII.  

1st part:
 

Assume that x  QM then, x  MQ
 

 MQQM 
 

Again, consider y  MQ then, y  QM
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 QMMQ 
 

 MQQM 
 

Hence, MQQM 
 

2nd part: 

Assume that x  QM then, x  MQ
 

 MQQM 
 

Again, consider y  MQ then, y  QM
 

 QMMQ 
 

 MQQM 
 

Hence, MQQM 
 

 

Proof of VIII  

1st part:
 

Assume that x  )SQ(M  then, x  S)QM( 
 

 S)QM()SQ(M 
 

Again, Assume that y  S)QM(  then, y  )SQ(M 
 

 S)QM()SQ(M 
 

Hence,
 

S)QM()SQ(M 
 

2nd part: 

Assume that x  )SQ(M  then, x  S)QM( 
 

 S)QM()SQ(M 
 

Again, Assume that y  S)QM(  then, y  )SQ(M 
 

 S)QM()SQ(M 
 

Hence,
 

S)QM()SQ(M 
 

 

Proposition 3.2  

I. ~ [N(P)   N(Q)] = (~ N(P))  (~N(Q))
 

II. ~ [N(P)   N(Q)] = (~ N(P))
 
 (~N(Q))

 
Proof of I 

~[N(P)   N(Q)]  

=  )Q(N)P(N),Q(N)P(N~ 
 

=     )Q(N)P(N~,)Q(N)P(N~ 
 

= (~ N(P)) (~N(Q))
 

Proof of II 

~[N(P)   N(Q)]  

=  )Q(N)P(N),Q(N)P(N~ 
 

=     )Q(N)P(N~,)Q(N)P(N~ 
 

= (~ N(P)) (~N(Q))
 

 

Proposition 3.3 

If S and Q are two rough bipolar neutrosophic sets such that QS implies )Q(N)S(N  then,
 

I. )Q(N)S(N)QS(N  
 

II. )Q(N)S(N)QS(N  
 

Proof of I 

)x(T )QS(N


 =   Xx:)x(Tinf )QS( 
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=   Xx:)x(T),x(Tmaxinf
QS   

  Xx:)x(Tinf),x(Tinfmax
QS    

=   Xx:)x(T),x(Tmax
)Q(N)S(N   

= Xx:)x(T)x(T
)Q(N)S(N  

 

Similarly,  

)x(I )QS(N



 Xx:)x(I)x(I )Q(N)S(N

 
 

)x(F )QS(N



 Xx:)x(F)x(F )Q(N)S(N

   

)x(T
-

)QS(N 
 Xx:)x(T)x(T

-
)Q(N

-
)S(N


 

)x(I
-

)QS(N 
 Xx:)x(I)x(I

-
)Q(N

-
)S(N


 

)x(F
-

)QS(N 
 Xx:)x(F)x(F

-
)Q(N

-
)S(N

  

Thus, ))Q(N)S(N)QS(N  
 

We can also see that, )Q(N)S(N)QS(N  
 

Hence, )Q(N)S(N)QS(N  
 

Proof of II 

)x(T )QS(N



 =   Ux:)x(Tsup
)QS(




  

=   Ux:)x(T),x(Tminsup QS
  

  Ux:)x(Tsup),x(Tsupmin QS
   

=   Ux:)x(T),x(Tmin
)Q(N)S(N

  

= Ux:)x(T)x(T
)Q(N)S(N

 
 

Similarly,  

)x(I )QS(N


  ,Ux:)x(I)x(I )Q(N)S(N
 

 

)x(F )QS(N


  ,Ux:)x(F)x(F )Q(N)S(N
   

)x(T
-

)QS(N   ,Ux:)x(T)x(T
-

)Q(N
-

)S(N 
 

)x(I
-

)QS(N   ,Ux:)x(I)x(I
-

)Q(N
-

)S(N 
 

)x(F
-

)QS(N   ,Ux:)x(F)x(F
-

)Q(N
-

)S(N   

Thus, ))Q(N)S(N)QS(N  
 

We can also see that )Q(N)S(N)QS(N  
 

Hence, )Q(N)S(N)QS(N   .
  

 

CONCLUSIONS 
In this paper we introduce the concept of rough bipolar neutrosophic set. We also study some properties on them 

and prove some propositions. The concept combines two different concepts namely, neutrosophic rough set and 

bipolar neutrosophic set. While bipolar neutrosophic set theory is mainly concerned with, indeterminate and 

inconsistent information, rough set theory is with incompleteness; but both the theories deal with imprecision. It 

is clear that rough bipolar neutrosophic sets can be utilized for dealing with both of indeterminacy and 

incompleteness.The proposed concept can be used in practical decision making roblem.
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